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Light diffraction by ultrasonic pulses at normal incidence is studied as well in the Raman- 
Nath region (low frequencies) as in the Bragg region (high frequencies). Based on a 
generating function method, an analytical expression for the Raman-Nath-like diffraction has 
been derived and compared with earlier work. Only small corrections within its validity region 
were observed. In order to extend these existing theories toward higher frequencies, numerical 
expressions for the intensity of the diffracted light waves are obtained by means of the Laplace 
transform theory. This powerful method leads to the same results for Raman-Nath-like 
diffraction and can easily be applied for much higher frequencies, too. Examples are provided 
showing the frequency dependence of the ultrasound, the influence of the Raman-Nath 
parameter v, and the spectral composition of the pulse on the diffraction pattern. When the 
pulse approaches a continuous wave, both theories converge to known results. A general 
condition concerning the symmetry properties of the diffraction spectrum has been derived. 

PACS numbers: 43.35.Sx 

INTRODUCTION 

Light diffraction by ultrasound has been studied in the 
past by several authors. Since Raman and Nath • explained 
the first observations of this interaction made by Debye and 
Sears 2 in Washington and Lucas and Biquard 3 in Paris, by 
considering the ultrasonic beam as a moving phase grating, 
several more complete treatments were proposed. 4-9 These 
refinements cover a lot of interesting topics such as optical 
probing of superposed, adjacent, or profiled ultrasonic 
waves. However, not only the question how light is modula- 
ted in amplitude and frequency after interaction with ultra- 
sound was investigated, also the inverse problems that de- 
duce the disturbing ultrasonic field from a known diffraction 
pattern, were examined with considerable interest. ]ø'• In 
nondestructive testing, the diffraction pattern is used to de- 
tect small defaults. ]2 

As, in general, pulsed ultrasound is used instead of con- 
tinuous plane waves for medical diagnosis or NDT, we gen- 
eralized the existing theory and developed a new one for 
pulses. Starting from the Maxwell equations, Leroy •3 ob- 
tained an extended Raman-Nath system of differential 
equations for the amplitudes of the different orders arising 
when plane light waves are diffracted by N superposed ultra- 
sonic waves. Knowing that pulses can be considered as a 
superposition of plane waves, it is our current interest to 
solve this system for arbitrary N. 

We first developed a generalization of the extreme Ra- 
man-Nath-like diffraction theory for plane waves. The gen- 
erating function method provides an analytic expression, be- 
ing the second-order approximation of a series expansion in 
a parameter p,, which is proportional to the squared ratio of 
the fundamental frequency of the ultrasonic pulse and the 
light frequency. As a special case, we find the expressions 
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experimentally verified by Neighbors and Mayer. TM The lim- 
its of validity of both methods are discussed and graphically 
illustrated. 

A second generalization is based on the Laplace trans- 
form method. •5'•6 Applying this powerful method, expres- 
sions for the diffracted light intensities can only be given in a 
numerical way, but, on the other hand, the range of validity 
becomes much larger. Our model provides reasonable re- 
sults for any range of frequencies. Influences of both param- 
eterstop and v and the transition from continuous plane wave 
to pulses are demonstrated. 

At last, a general theory concerning the symmetry prop- 
erties of the diffraction pattern of light obtained after inter- 
action with ultrasonic pulses at normal incidence is given. 

I. GENERAL SYSTEM OF DIFFERENTIAL EQUATIONS 

DESCRIBING THE AMPLITUDES OF THE DIFFRACTED 

LIGHT BEAMS 

Consider a plane-wave laser beam with wavelength ,;L 
and frequency v, normally incident on a pulsed ultrasonic 
wave with repetition frequency v•' and center modulation 
frequency v•' propagating in a vessel filled with water. 
Choosing the geometry such that the sound beam, having 
width L, is propagating in the x direction and the lightbeam 
in the z direction, the time history of the refractive index of 
the medium disturbed by a pulse train can be expressed by 
the Fourier sine expansion: 

•t(x,t) -- •to q- •t • ajsin 2rrj v•t -- x q- tSj , (1) 
j•l 

* is the length of the where v• is the repetition frequency, A p 
pulse in the medium, tto is the refractive index of the undis- 
turbed medium, tt is the maximum variation of the refractive 
index, and •t' ct• and tS• are the amplitude and phase ofthefih 
Fourier component of the pulse (see Fig. 1 ). 

In an earlier work, 13 Leroy derived that the amplitudes 
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of the diffraction orders in the far field satisfy the extended 
Raman-Nath equations (2). . 

2 "(•) - • aj [*, _j (•)exp( - i•5: ) 

- •P, +• (•)exp(fiS•) ] =/,o, n2•P, (•), 
with boundary conditions 

ß ,(•=0)=•5,.o (n'-o•...+o•), 
where 

(2a) 

(2b) 

•' = ( 2rr/A )t•z (2c) 
and 

.2 pp -- A 2/]toltA p . ( 2d ) 
Evaluated in the Raman-Nath parameter o, defined as 
(2rr/A)ttL, with L the width of the sound beam, the solution 
ß •(o) is the amplitude of the diffracted light beam whose 
direction with regard to the incident laser beam is defined by 
the angle 

ß ), (3) O, - - arcsin(nA/A p 

while its frequency will be v - nv•' and the intensity is given 
by 

I_, (v) - e•,• (v).•*(v). (4) 

We now propose two methods to integrate this infinite sys- 
tem of coupled differential equations (2). 

II. CALCULATION OF THE FAR-FIELD AMPLITUDES 
OF THE DIFFRACTION PATTERN BY MEANS 

OF A GENERATING FUNCTION METHOD 

A. Transformation of the system of differential 
equations into one partial differential equation 
for the generating function 

In their study of the diffraction of light by one single 
fundamental tone, Kuliasko et al. •7 successfully introduced 
the generating function method in order to integrate the sim- 
plified system of differential equations. We will use the same 
method to find the solution of (2) describing the diffracted 
intensities. 

Let us consider •,, (•) to be the coefficients of the Laur- 
ent expansion of an unknown generating function G(•,r/), 
which we suppose to be holomorphic in an annular region 
with center O in the complex r/plane. 

So, we have 

= Z 

The coefficients •,, (•) are then given by 

(5) 

1 ffc G(•,r/) dr/, (6) -5-;/ v 
whereby the contour C is any closed path within the annular 
region encircling the origin O once in a counterclockwise 

l! l 
,'%-- --',.i!!i I 

I 

i 

FIG. 1. Visualization of repetition (v•) and center modulation frequency (•) of a typical pulsed ultrasonic sequence (v, is the velocity of the sound in the 
medium). 
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sense. If we multiply both sides of (2a) by •7" and sum over 
all n, taking into account the expressions for the first- and 
second-order partial derivatives of G(•,•7) with respect to •7, 
we find that 

8G 
(f,v) 

-- Z ai [•exp( -- i•i) -- r/-•exp(i•)] G(•,r/) 
j=l 

( 0c ) =/p• v•_ •-G (•,V) + V (•,V) . 8r/2 • 
(7a) 

The boundary conditions (2b) and the definition of the func- 
tion G(•,•7) lead to the following condition with respect to 
G: 

G(• = 0, r/) = 1. (7b) 

B. Solution of the partial differential equation for the 
generating function 

The problem of the diffraction of light by a pulsed ultra- 
sonic wave is now reduced to the integration of the second- 
order partial differential equation (7a) with boundary con- 
dition (7b). Once the function G(•,•7) is known, the 
amplitudes of the diffracted light waves may be found by 
expanding G(•,•7) into a Laurent series or by calculating the 
integral (6). In order to integrate (7) we propose a solution 
in the form of a series in 

•(•,•) = 5; (½•)• (•,•). (8) 
k=O 

Substituting this expansion into (7) and comparing the coef- 
ficients of (ipp)"on both sides, we find the following system 
of partial differential equations: 

2 8Go (•',r/)- • a• [•exp(- i6•) 
- •-•exp(i6• ) ]Go (•,•) - 0, (9a) 

20G" (•,•) 

-- • a• [ • exp( -- i6• ) -- • -• exp(i6• ) ] G, (•,•) 
j=l 

= V 2• (•,V) + V (•,V), n>l, (9b) 

with boundary conditions 

G,, (•' = O,r/) = 6,,,o. (9c) 

The first term of the series expansion ( 8 ) is obtained by 
integration of (9a). The solution satisfying the boundary 
condition is 

= exp [ exp -- -- ] .; 
j=l 

or 

= • E &(a• 'c)"•'•'exp( -- iq•6•) , (10) j= q•=-• 

where Jp (x) is the Bessel function of order p. 
The second term of (8), G 1 (•',T]), can be calculated 

from (9) by putting n = 1. Introducing the notation 
t,= r/" exp( - i6,, ), this term is the solution of the follow- 
ing partial differential equation: 

Knowing that G1 (• = 0,r/) = 0, the second term of the se- 
ries expansion is given by 

G1 (•',T ] ) 

= Go (•,•7) j2.al(t• -- t•- 1) 
.: 

• • • ) • • j'k'•j'• (tj • tj• l)(t• • t • 1• , ••j:l•:l 
(11) 

In the same way, we can derive an expression for the third 
term of the series expansion and after some calculations we 
find 

G2(•-,T])- Go(•-,T]) •-3 Jn'øtj(tj--tj-1) + 384 j=l 

+ oo 

•4 • • j3.k.as.ak (t• + ts-1)(tk + t F 1) 

+ 384 •4 • • j2.k2.a•.a• (tl -- tf •)(t• -- t •-1) j:l k=l 

13 

960 

1 

•s • • •j.k.12.a•.ak.at(t•+t•-l)(t• +t•-l)(tt_tt_ ) 
j=l •=• 

1 •6 E • E E J'k'l'm'al'a•'a"am(t• +t• -1)(t• +t•y•)(t, +t•-l)(t,, +t-l) ß 1152 m j=! '=1 /=1 m=! 
(12) 
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Neglecting terms in pp of higher order than the second one, 
we have obtained an approximate solution for G(•,r/). 

G(•',•I) = Go (•',•1) + ipp.G, (•',•1) -Pp2'G2 (•',•1). 
(13) 

C. Amplitudes of the diffracted light waves 

Substituting the expressions ( 10)-(12) for Go, G•, and 
G2 into (13) and calculating the coefficient of r/" a second- 
order approximation formula for the amplitude of the dif- 
fracted light wave of order n has been acquired: 

_ + 
A detailed expression for q•,, evaluated in the Raman-Nath 
parameter o is given in the Appendix. The intensities can be 
calculated from (4). 

D. Remarks 

(a) W•,o) given by (A2), corresponds to the amplitude of 
the nth diffraction order in the case of extreme Raman-Nath 

regime (pp = 0). It is exactly the same expression as Neigh- 
bors and Mayer TM found by means of the diffraction integral 
theory. As W(,o) is only the first term in our expression for the 
diffracted amplitudes, we can consider ipp.W•, 1) and 

2 (2) 
-pp '•, as corrections to the theory of Neighbors and 

Mayer. 

(b) As an ultrasonic pulse with repetition frequency v• 
and center modulation frequency v• -- kv•, converges to the 
continuous plane wave having frequency v•, the amplitude 
spectra of the supersonic wave approaches/•k -/•ak --/• 
and/•i -/•ai -- 0 for i•- k. The amplitudes of the diffraction 
pattern in this limit case can be calculated using (14) and are 
given by 

(15) 

with m•Z and 

• = -•-ttz, Po = • = k2'Pp o - ß ttoltA •2 
This is exactly the same formula, obtained by Kuliasko 
et al. •* in the case of a single fundamental tone of frequency 
v•. As a result of the convergence to a continuous wave, the 
satellite lines vanish and the diffraction pattern becomes 
symmetric with respect to the zeroth order. 

E. Examples 

We considered for all figures in this article two kinds of 
pulses represented by their functional form expD 
(x,t;k 1 ,k 2 ) and Gaus (x,t;k• ,k2,k3 ). 

The exponentially damped pulse is characterized by two 
parameters and causes variations of the refractive index giv- 
en by formula ( 1 ) in which cr• and •5; satisfy 

ay sin 2rcjv•' t- + • - exp D t- • ;k• ,k2 , j= U• 

with v.• being the velocity of the sound in the medium: 

e - Ay 
exp D(y;k• ,k 2 ) = sin(•y), 0<y < ap, 

N• ( k • ,k 2 ) 

exp D(y;k• ,k2 ) = exp D(y -- ap;k• ,k2 ), y•ap, 

where k• and k2 are the repetition and decay parameter de- 
fined by 

kl 1 k2 
ap .... and A -1 = 

and NE (kl ,k2 ) is a normalization constant. 
The Gaussian-shaped pulse is characterized by three pa- 

rameters, which are defined as follows: 

Gaus (y;kl ,k2,k 3 ) 

e - 1/2[ (y -- y2)/Y3] 2 

No (kl ,k2 ,k3 ) 

Gaus (y;k• ,k2,k 3 ) 

sin (co•y), 0<y < %, 

= Gaus(y -- ap;k• ,k2,k 3 ), y>/ap, 
where 

k• 1 k2 k3 
ap .... , Y2 --•, Y3 --•, 

and No (kl ,k2 ,k3 ) is a normalization constant. 
By varying these parameters k•, k2 (and k 3 ), a wide 

range of pulses can be reached. Nevertheless, the theory is 
valid for any arbitrary functional form. 

In all cases we determined the value for N (the number 
of Fourier coefficients taken into account) so that 
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EIj 1 <•<N:a•v+ , < 10- ", 
with a maximum value of 62. 

In order to restrict computer calculations, we suppose 
that in (14) all Bessel function products J,, 'J,2'' 'J,N 
with 

N 

lal >4 
j=l 

vanish (4th order approximation). This means that the Ra- 
man-Nath parameters vj = ajv are small enough so that 
terms like J• (vi) 'J2 (v•) 'J2 ( vk ) or J_ 3 ( v i ) 'J2 (v•), etc., 
become negligible. 

In Figs. 2 and 3 some results of the generating function 
method (GEM) [ formulas (14) and (4) ] are shown. For 
pp = 0.0 the GFM leads to the same diffraction spectrum as 
the method of Neighbors and Mayer. •4 The corrections due 
to the additional terms inpp are rather small, but of the same 
order as the ones Kuliasko et al. • obtained based on the 
same method in the case of a continuous wave. The largest 
corrections occur at the highest diffraction orders (negative 
and positive). 

In Reft 9, Leroy and Claeys remarked that the GFM for 
a continuous wave shows a big discrepancy with experiment 

and other theories when the Raman-Nath parameter v be- 
comes larger. In order to study the validity of expression 
(15), the authors verified the necessary condition •;In = 1 
in terms Ofpo and v. Applying the same control method, we 
obtained similar relations for the validity of (14) depending 
on the shape and length of the pulse. For instance in the case 
of the Gaussian-shaped pulses with parameters kl = 18, 
k 2 = 9, k 3 = 1000 (continuous wave), and k 3 = 2, Fig. 
4 (a) and (b) shows the extension of the region of validity of 
previous theories for our first and second correction terms. 
Convinced by many computer calculations, we can conclude 
that, in general, formula (14) is valid in a region in the po-V 
plane, which is larger than in the continuous wave limit, but 
which converges uniformly toward this limit case as the vari- 
ance parameter k3 (or the decay parameter k 2 for an expon- 
entially damped pulse) tends toward infinity. 

Nevertheless, as p• has to remain small, the correction 
terms in (14) never reach values that can change the diffrac- 
tion pattern in a considerable way. This leads to the conclu- 
sion that, in spite of the larger validity region, the GFM does 
not show important differences compared with the results of 
Neighbors and Mayer, and within the validity region of the 
GFM, the restriction of (14) to q• (,o) (v) will lead to satisfy- 
ing results. 
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dlffr&ctlon order. 

FIG. 2. Far-field diffraction pattern caused by interaction of normally incident light with a Gaussian-shaped ultrasonic pulse (k I -- 18, k 2 = 9, k 3 = 2) 
(inset). Results of the generating function method for pp = 0.0 (-) and pp = 9.0 E-04 (A) (v = 2.5). 
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FIG. 3. Far-field diffraction pattern caused by interaction of normally incident light with an exponentially damped ultrasonic pulse (k, = 6, k: = 2) 
(inset). Results of the generating function method for p•, = 0.0 (-) and p•, = 1.1 E-02 (A) (v -- 2.0). 

(a) 

......... • ......... i ......... t ......... i ......... [ ......... 

• 2 3 ,4 5 

po=p, .(k•) 2 

•'ø I (b) 
2. 
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6 0 • 2 3 ,4 5 

po = p• ß ( k• )2 

FIG. 4. Limits of validity in terms ofpo ( = k •p, ) and v for the generating function method calculated by testing the accuracy of the necessary condition 
Z,,I,, = 1: (a) Validity of formula (14) restricted to q•,o) and first-order correction term ip•,.q•l, '•, calculated for three Gaussian-shaped pulses 
(k, = 18,k: = 9) with different variance parameter ks' upper curve k• = 1, middle ks -- 2, lowest curve ks = o• ( = continuous wave). (b) Validity of 
formula (14) calculated for two Gaussian-shaped pulses: upper curve k• = 18, k: = 9, ks = 2; lower curve k• = 18, k: = 9, ks -- c• ( -- continuous wave). 
In both parts the limits of the validity region of the diffraction integral theory of Neighbors and Mayer can be represented by the vertical axis Po = 0. 
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FIG. 5. Illustration of P(k) and Q(k) in a typical far-field diffraction pattern. 

III. CALCULATION OF THE FAR-FIELD AMPLITUDES OF 
THE DIFFRACTION PATTERN BY MEANS OF A 
LAPLACE TRANSFORM METHOD 

A. Transformation of the system of differential 
equations (2) into an algebraic system 

In a previous paragraph we introduced the parameter 
* * *), it is known k• - Vo/U;. Defining /3-- arcsin(A/22 p 

from theoretical and experimental studies •4'•8-2ø that the 
primary orders in the Fraunh6fer diffraction pattern show 
up in the directions k, '2/3 and at most k• - 1 secondary 
orders can be observed between two primary orders at every 
even multiple of the angle/3. Also from previous studies we 
know that, in the case of normal incidence of the laser beam, 
as many positive as negative primary diffraction orders will 
contribute to the final spectrum, while the number of sec- 
ondary orders left and right of a peak can differ from one 
primary order compared to another. 

Suppose now that only 2N + 1 primary orders (N posi- 
tive and Nnegative) have a nonzero contribution of intensity 
to the final diffraction spectrum and that for the k th primary 
order ( -- N<k<N) only P(k) secondary orders to the left 
and Q(k) secondary orders to the right of this peak occur 
(Fig. 5 ). If we assume that all other amplitudes are vanish- 
ing small, the infinite system (2) is reduced to a finite set of 
equations. 

Applying the Laplace transform to the truncated system 
and substituting 

0•,, (s) -- •Y•[ q•,, (;) ] = q•,, (;)e- s• (16) 

we obtain an algebraic system of equations, which can be 
written in matrix notation as follows: 

[2si + M ]d(s) = 2E, 

where I is the unit matrix of dimension d where 

(17) 

N 

d-- • [P(k) +Q(k)+]], 
k= -N 

' A( -- N) 
--B*( -N, 1) 

--B*( --N, 2) 
ß 

ß 

ß 

ß 

ß 

ß 

-- B *( -- N, 2N) 

' - 
-- z•' 

-- z•' 
ß 

ß 

ß 

ß 

ß 

ß 

-- Z•(k) + Q(k) 

A(k) = 

B( -N, 1) B(-N,2) 

A(-N+ 1) B(-N+ 1,1) 

--B*(--N+I,1) A(--N+2) 

Z I Z 2 

-p[kk, - e(k) + 1] 2 z, 
- z•' 

B( -- N, 2N)' 
ß 

ß 

ß 

ß 

ß 

ß 

A(N-- 1) B(N-- 1,1) 

-- B*(N-- 1,1) A(N) . 

Zp(k) + Q(k) 
ß 

ß 

ß 

ß 

ß 

ß 

ß 

ß 

-p[kk, + Q(k) ]2. - z? 

- N<k<N, 
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B(k,n) = 

Znkl 4- P(k) -- P(k + n) Znkl + P(k) + Q(k + n) 
ß ß 

ß ß 

ß ß 

ß ß 

ß ß 

ß ß 

.Znkl -- Q(k) -- P(l• + n) Znki -- Q(k) + Q(l• + n) 

with zj - % exp (kSj); 

and 

-- N<k<N, l <n<N- k, 

ß "•- •{o• (s).. '•o (s)'..• + e(o• (s)...•,_ •{• (s)" .•, + e{• (s) ] 

E= ' [0.-.0-..0-..0-.-0... 1..-0...0..-0]. 

B. Solution of the algebraic system with unknown 
Laplace transformed functions 

Defining a new variable t- -- 2is and multiplying Eq. 
(17) by i, we get- 

L(t) '3(t) = [D - tI ]3(t) = 2iE, (18) 
where D is the following matrix: 

'G( -- N) 
H*( --N, 1) 

ß 

ß 

ß 

ß 

ß 

ß 

ß 

ß 

H * ( -- N, 2N) 

H( -- N, 1 ) H( -- N,2) 

G(--N+I) H(--N+ 1,1) 

G(N-- 1) 

H*(N-- 1,1 ) 

H( -- N,2N) 

H(--N+ 1,2N-- 1) 
ß 

ß 

ß 

ß 

ß 

ß 

H(N-- 1,1) 

G(N) 

and G(k) = iA(k); H(k,n) = iB(k,n); 3(t) = •(it/2). 
Also, G(k) is Hermitian and D is also a Hermitian ma- 

trix. From linear algebra we know that the zeros t•...t d of 
det[L(t) ] are the eigenvalues of D and, consequently, they 
are all real. Applying Cramer's method, we can deduce the 
following expression for the Laplace transformations of the 
amplitudes: 

Co( [D -- t/] p,p, •.,t`, ) 
= 2i , 

det[D -- tI ] 

-- N<k<N, - P(k)<lk <Q(k), (19) 
--1 

P-- • [ P( j) + Q( j) + I ] + P( O ) + I, 
j------iV 

k--I 

P{k,k)-- • [P(j)+Q(j)+I] +lk +P(k)+l, 
j=--N 

and Co( [D -- tI ] p. e, t`. ,t` , ) is the co-factor of the element on 
the position (P,P( •,tt`• ) in the matrix [D -- tI]. 

So, generally speaking, numerator and denominator of 
(19) are polynomials in t with complex coefficients. This 
means that the Laplace transforms of the amplitudes in the 
Fraunh6fer region can be expressed in the following way: 

•kk I 4- It` (S) -- ,=• (IkIJkkl'4- lt` ) 
: P (kkl + It,) • (s)/P2 (s), 

with 

deg [P(•' + tt`>(s) ] <deg[P2 (s)] I ß 

(20) 

C. Calculation of the intensities of the diffracted light 
waves 

The inverse Laplace transformation can be calculated 
applying the Heaviside expansion theorem: 2• 

kIJkkl + It` (•) -- • -- l(•kk I 4- lt` ) 
q 1 d ""- • 

= y lim 

((•'+'•'(s) ) 
where s• = itp/2, p. 1...d, t• is the eigenvalue of D, q is the 
number of different eigenvalues (without counting multi- 
plicity), and n• is the multiplicity of eigenvalue t• or 
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q 1 d""-• 
lim • = _ )! p= 1 (rip 1 '-', dt 

X {[Co( [D - tI ]v,v(•.,•, ) 
X (t • t m )'7'" ei/2t• . 

rn=l 

•p 

(21) 

In the case that D has only single eigenvalues, formula (21 ) 
can be simplified: 

d 

•kkl + ,• (•) = • CO( [O -- t,I ]p.p(•.,•, ) 
p=l 

X (g -- t,, ) e '¾c/2 (22) 
m= 1 

and with the following abbreviations: 

VJ), Vk, l k, Re(kkl+!•)(tp) 

= Re [Co([D-- tpllv. p(•.,•) 

•Jl•, •j k, lk, Im(kkl +/•) ( t/• ) 

= Im[Co([O-- 
d 

Vœ, Pol(t•,) = H (t•, - tin). 

)], 

)], 

The intensity of order -- (kk• + lk ) can be calculated from 
the expression (4) and (22) using the double angle formula 
for cosine and recalling the boundary conditions (2b): 

I_ (kk, +/,) (•) = 8k.o8/•.o 

a a Re(kkl+!•)(tp)Re(kk,+!•)(tq) + Im(kk'+!•)(tp)Im(kkl+l•)(tv) 
-- 4 • • Pol(t•, )Pol(tq ) p = 1 q>p 

a a Re(kk,+!•)(tv)im(k•,+!•)(tq) _ Re(!'kl+i•)(tq)Im(kkl+i•)(tl•) 
+ 2 • • Pol(t, )Pol(tq ) p = 1 q>p 

sin2(t• - tq ) • 
4 

sin(t• - tq) ---•. (23) 
2 

We remark, however, that the most general expression for 
the intensity is given by the squared modulus of (21 ), an 
expression that is rather complicated. 

As d generally reaches values higher than 20, the nu- 
merical aspect of this method is very important. The use of a 
subroutine library (NAG) to calculate the eigenvalues of D 
and the cofactors of [D - tI] makes the method easily pro- 
grammable. 

D. Remarks 

In the continuous wave limit numerical calculations 

have been performed from which we conclude that 
I_ (kk, + //,) (•') tends toward zero if lk •0 while I_ k•, (•) is 
given by exactly the same expressions deduced by Blomme 
and Leroy, •6 when considering the case of normal incidence. 
Thus, also by means of this theory, we observe that as a result 
of the convergence to a continuous wave, the satellite lines 
vanish and the diffraction pattern becomes symmetric with 
respect to the zeroth order. 

E. Examples 

To illustrate the Laplace transform theory we shall con- 
sider the same two kinds of pulses described earlier while 
studying the generating function method. In performing the 
theoretical calculations N and ((P(k), Q(k) ) I k: - N'" N), 
which determine the nonzero diffraction orders, are chosen 
so that for any higher-order approximation no significant 

differences appear. Indeed, using the Laplace transforma- 
tion method, it is always possible to find a suitable level of 
approximation to calculate the diffraction pattern very accu- 
rately for any kind of frequency range or any kind of shape of 
the diffracting pulse train, and for no matter what value of 
the Raman-Nath parameter v. Some results of this powerful 
numerical model are visualized in Figs. 6 and 7. 

Figure 8 illustrates the influence ofp• or Po ( = k • .p• ) 
on the far-field diffraction spectrum caused by the pulse 
shown in Fig. 8 (a) (reproduced from Wolf et al. 2ø ). Since 
Pp (Po) is proportional to the squared value of the funda- 
mental (center) frequency of the ultrasonic pulse and in- 
verse proportional to the maximum variation/• of the refrac- 
tive index, any increase ofp• (Po) corresponds to an increase 
of fundamental (center) frequency or a decrease of power of 
the pulsed ultrasonic wave. The sequence shown in Fig. 8 
clearly illustrates the decreasing number of nonzero orders 
for higher frequencies or lower ultrasonic power. For 
p• = 1.0 E-09 we nearly get the same results as in the experi- 
ment ofWolfet al. 2ø Up top• = 1/(k• )2•5 E-03 (Po • 1) 
the spectrum does not change much. Once p• > 1 E-02 
(Po •. 2) the changes become larger and larger: the number 
of primary orders diminishes, satellite lines vanish, and 
when pp is large enough only zeroth, first, and minus first 
primary orders are measurable. An analog change due to p• 
is illustrated in Fig. 6. 

The effect of increasing v, shown by Neighbors and 
Mayer, TM can also be found using the Laplace transform the- 
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FIG. 6. Far-field diffraction pattern caused by a Gaussian-shaped ultrasonic pulse k, -- 20, k 2 -- 10, ks = 0.5 (inset)' Results of the Laplace transform 
theory (v= 3.0)' (a)/9p -- 1.0 E-08 orpo: 4.0 E-06; (b) pp -- 2.5 E-03 orpo = 1.0. 
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FIG. 7. Far-field diffraction pattern caused by an exponentially damped ultrasonic pulse k• = 4, k 2 : 0.9 (inset)' Results of the Laplace transform theory 
(p• = 1.0 E-09 or Po -- 1.6 E-08)' (a) v = 2.0, (b) v = 3.0. 
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FIG. 8. Dependence of the far-field diffraction pattern on the parameter p, in the case of a diffracting pulse shown in (a) (reproduced from Wolf et al. 2ø )' 
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ory. Figures 7 and 9 clearly illustrate that more and more 
orders show up when v becomes larger. 

Choosing Nand ([P(k), Q(k) ]Ik:- N...N) in an ap- 
propriate way, we can calculate the spectrum in the limit 
pp =0.0 (when most orders appear): Figs. 6(a), 7, and 
8 (b). Comparing Figs. 7 (a) and 8 (b) with Fig. 10 (a) and 
(b), which are the results according to Neighbors and 
Mayer, TM we may conclude that the correspondence when 
pp •0.0 is extremely good. 

At last, we visualize the convergence of our new Laplace 
transform theory toward the MN-OA method (with M = N 
for normal incidence) of Blomme and Leroy •6 as a pulse 
converges to a continuous wave (Fig. 11). Increasing the 
variance parameter k3 of a Gaussian-shaped pulse, the dif- 
fraction pattern changes in this way that satellite lines lose 
part of their intensity while this loss of energy is compensat- 
ed by an increase of the intensity of the primary orders (ex- 
cept for the zeroth order). When k3 is large enough, the far- 
field spectrum is exactly the same as the one obtained by the 
MN-OA method of Blomme and Leroy for normal incidence 
of light on a continuous ultrasonic wave: no satellite lines 
and a perfect symmetric pattern. 

IV. GENERAL THEORY CONCERNING SYMMETRY 

PROPERTIES OF THE DIFFRACTION PATTERN 

Theoretical and experimental results •4'•8-2ø clearly 
show an asymmetric diffraction pattern when light is normal 
incident on an ultrasonic pulse. Neighbors and Mayer ex- 
plained this property by analyzing successive approxima- 
tions of their expression for the amplitudes of the diffraction 
orders (which is equal to the first term in the series expan- 
sion for the amplitudes obtained by our generating function 
method). In this paragraph, we derive a general condition 
concerning the symmetry property of the far-field pattern 
caused by the diffraction of a normally incident plane laser 
beam by a superposed ultrasonic wave. The method we use 
here is based on the generating function method, which was 
explained earlier. 

Considering the amplitudes q•,, (•) as the coefficients of 
the Laurent expansion of the unknown generating function 
G(•,r/), we showed that G(•,r/) satisfies the partial differen- 
tial equation (7a) with boundary condition (7b). 

Replacing the complex variable r/by exp(iA ) r I -• (A 
being any real number) in G(•,r/) we find that 

G(•,r/) - G [•,exp(iA)r/-•] 

= • q• .... (•')exp(inA)rl", 

satisfies the following partial differential equation' 

(k and l being any integer) with boundary conditions 
G(0, r/) - 1. Knowing this, we can derive the necessary and 
sufficient conditions for the symmetry of the diffraction 
spectrum: 

A- 261 -Jr- (2k- 1)rr, keg (24a) 

6• =j61 + [(2/- 1) -jl (rr/2), l•Z. (24b) 

Indeed, if these conditions are fulfilled, the functions G(•,r/) 
and G(•,r/) satisfy the same partial differential equation 
with the same boundary condition. As the solution is unique, 
we may conclude that under these restrictions 

q•, (•) = q•_, (•)exp(inA), 

which means that the diffraction pattern is symmetric with 
respect to the zeroth order. 

In the case 6• = 0 (where 6• is the phase difference be- 
tween the jth harmonic and the fundamental tone), we find 
that 

q•,, = ( -- 1)"q•_,,, 

only if 

6j = [ (2l-- 1) --j] (rr/2) (l•g•-- 2,3,...), 
a condition that has been obtained by Mertens and Leroy. TM 

The general conditions (24) mean that the diffraction 
pattern obtained by diffraction of light by ultrasonic pulses 
at normal incidence is symmetric only if the Fourier phases 
in the sine expansion of the pulsed wave satisfy the following 
simple rule: ifj is odd 6• --j6• must be an even multiple of 
rr/2 and ifj is even 6• --j6• must be an odd multiple of rr/2. 
As these conditions are rather strong, they are generally not 
fulfilled in the case of pulses, so that mostly the diffraction 
pattern will be asymmetric. 

V. CONCLUSION 

The diffraction of light, normally incident on a pulsed 
ultrasonic wave, has been studied using two generalized ap- 
proximation methods. Both theories clearly illustrate that 
compared with the case of a continuous wave, more diffrac- 
tion orders (satellite lines) appear while the spectrum itself 
becomes asymmetric. 

By means of the generating function method, we obtain 
an analytical expression for the amplitudes of the diffracted 
light waves that consists of a series expansion in a parameter 
pp, with the zeroth-order term being exactly the formula 
known from earlier work. The corrections found by evaluat- 
ing this series up to the second order, are rather small and 
only valuable for less or more strong restrictions. 

On the other hand, a much more powerful numerical 
method based on Laplace transformations was presented. 
This method can always be adjusted in such a way that it is 
possible to cover as well the Raman-Nath-like diffraction 
for low frequencies as the Bragg type interaction for high 
frequencies. Perhaps the only disadvantage is that we do not 
have an analytical expression for the amplitudes but a nu- 
merical one leading to intensive, but nevertheless easily pro- 
grammable computer work. Different sets of examples have 
been provided that demonstrate the influence of the ultra- 
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FIG. 9. Dependence of the far-field diffraction pattern on the Raman-Nath parameter v in the case of a Gaussian-shaped pulse k• = 18, k 2 -- 9, k• = 1.5 
(inset)' Results of the Laplace transform theory (p, = 1.0 E-03 or Po = 0.324)' (a) v = 1.5, (b) v = 3.5. 
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sonic frequency (included in the parameters pp and Po ), the 
Raman-Nath parameter v, and the shape of the pulse (spec- 
tral composition). 

The general property of asymmetry of the diffraction 
pattern caused by an arbitrary pulsed ultrasonic wave at nor- 
mal incidence has been explained theoretically. 
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APPENDIX: DETAILED EXPRESSIONS FOR •.(V) 
[ v=(2•/•.)!•L] 

Define 

N 

vj = aj v,q -- • kq •, 

and N the number of coefficients taken into account in the 

Fourier expansion of the time history of the pulse: 

, J 

%(v) = • Jq•(V•)'"Jq•,(v•v)exp--i qn•n J•_q(V,)exp(--i(n--q)•) 
=2 q2' ' ' qN = -- o= 

+ • aj 'j: ip,o'- •- --p• 'j: • (Jn_q_j(Ol)exp[ -- i• -- i(n -- q --j)6] ] j= 

-- Jn_q+j(v] )exp[ + i6j -- i(n -- q +j)6] ]) 

NN [( U 3 10 v4 • 7 + Z Z 384 •=• n=• 384 

XJn-q-j-n (U• )exp[ -- i• -- i•n -- i(n -- q --j-- k)• ] 

. v 3 10 v4+p•.j.k 7 x '/384 384 

v 3 10 = 7 384 384 

v 3 10 7 384 -- pn 'j' k 384 

( ) • E E E •'•n'•'J'k'le --P• 'rS' 13 
•=•n=•/=• 960 

• •Jn - q -j- k -I ( U1 )exp [ -- i• -- i•n -- i•t -- i(n -- q --j -- k -- 1)• ] 

• Jn_q+j_k_l(U1 )exp[ + i• -- i• -- i• l -- i(n --q +j-- k-- 1)• ] 

+ J,- q-• + n-i (v•)exp [ -- i• + i•n - i• l -- i(n -- q --j + k -- 1)• ] 

• J.q+j+n_l(v• )exp[ • i•j • i• -- i•l -- i(n --q •j • k-- l)• ] 

-- Jn - q -j- k +l ( U1 )exp [ -- i• -- i• • i• l -- i( n -- q --j -- k • 1)• ] 

--J.q+j_•+l(v• )exp[ • i•j -- i• • i•l -- i(n--q •j-- k + l)• • ] 

--Jn_q_j+k+l(U1 )exp[ --i• + i• + i• l --i(n--q--j+ k + 1)• ] 

--J.q+j+n+l(v• )exp[ • i•j • i•n • i•l -- i(n --q •j • k • l)• ] • 

• E E E E •J '•'•l'•m'j'k'l'm' --P• 'U6' 
•=• •=• l=• •=• 1152 

•[Jn-q-j-k-l-m (U1)exp[ -- i• -- i•n -- i• l -- i• m -- i(n --q--j-- k-- 1-- m)• ] 
ß Jn-q+j-k-l-m (UI)exp [i• -- i•n -- i• l -- i• m -- i(n --q +j-- k-- 1-- m)• ] 

+ J,- q-• + n- l- • (v•)exp [ -- i• + i•n -- i• l -- i• m -- i(n -- q --j + k -- 1 -- m)• ] 

• Jn_q+j+k_l_m (U• )exp[i•j • i•k -- i•l -- i• m -- i(n--q +j + k-- l-- m)• ] 

+ J,- q-•- n + l- • (v•)exp [ -- i• -- i• + i• l -- i• m -- i(n -- q --j -- k + 1 -- m)• ] 

O4)Jn_q+j_k (O 1 )exp [iSj -- iS• -- i(n -- q +j-- k)8, ] 
ø4)Jn-q-j+ k (Ol)exp[ -- iSj + iS• -- i(n -- q --j + k)8, ] 
v4)J,,_q+j+•,(v, )exp[iSj +iSm, --i(n--q +j + k)8, ] 
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+Jn_q+•_k+•_m(V• )exp[i6• --i6k d-i6• --i6m --i(n--qd-j--k d-l--m)6• ] 

+ Jn_q_j+ k+ •_m (o• )exp[ -- i•j "[- i• k + i• -- i•,,,, - i(n - q -j + k + l- m)6• ] 

+Jn_q+j+k+•_m(o• )exp[i•j "[-i•k +i•--i•,,,, -i(n-q+j+k+ l-m)6• ] 

+ Jn-•-•-k-•+m(V• )exp[ -- i6• -- i6k -- i6• q- i•rn -- i(n --q--j-- k- I q- m)6• ] 

+ Jn-•+•-k-•+m(V• )exp [i6• -- i6k -- i6• + i•rn -- i(n --q +j-- k- I q- m)6• ] 

+ Jn_q_j+k_•+m (o• )exp[ -- i•j "[- i•k -- i• + i•,,,, - i(n -q-j + k- l + m)6• ] 

+ Jn_q+j+ k_•+ m (o• )exp[i•j "[- i•k -- i• + i•,,,, - i(n - q +j + k- l + m)6• ] 

"[- Jn_q_j_k + •+ m (o• )exp[ -- i•j -- i• k "[- i• "[- i•,,,, - i(n - q -j- k + l + m)6• ] 

+ Jn_q+j_k+•+m (o• )exp[ + i•j -- i•k -[- i• "[- i•,,,, - i(n -q +j- k + l + m)6• ] 

-[-Jn_q_j+k+•+m(o• )exp[ -- i•j -[- i• k + i• "[- i•,,,, - i(n -q-j+ k + l+ m)6• ] 

-•- Jn_q+j+k+!+m (Ol )exp[ ,-•- i•j -•- i• k •- i6! + i6m -- i(n -- q +j •- k + l + m)6l ] ]}. (A1) 

Expressions for q•,• ) (v) and q• (•2) (v) can be deduced from 
(A 1 ) and (14) by comparing terms in ipp and -- p3. We 
only explicitly write the formula for q•(•o)(v)- 

q2 • -- o• q3 • -- oe q N • -- oe 

XJq3 (u3)'"Jq•v(UN)Jn_q(U1 ) 

( N ) Xexp -- i • q•eS• -- i(n --q)6• . (A2) 
k=2 
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